skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Narayan, Purnima"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present a comprehensive assessment of multiparameter tests of general relativity (GR) in the inspiral regime of compact binary coalescences using principal component analysis (PCA). Our analysis is based on an extensive set of simulated gravitational-wave (GW) signals, including both general relativistic and non-GR sources, injected into zero-noise data colored by the noise power spectral densities of the LIGO and Virgo GW detectors at their designed sensitivities. We evaluate the performance of PCA-based methods in the context of two established frameworks: and . For GR-consistent signals, we find that PCA enables stringent constraints on potential deviations from GR, even in the presence of multiple free parameters. Applying the method to simulated signals that explicitly violate GR, we demonstrate that PCA is effective at identifying such deviations. We further test the method using numerical relativity waveforms of eccentric binary black hole systems and show that missing physical effects—such as orbital eccentricity—can lead to apparent violations of GR if not properly included in the waveform models used for analysis. Finally, we apply our PCA-based test to selected real gravitational-wave events from GWTC-3, including GW190814 and GW190412. We present joint constraints from selected binary black hole events in GWTC-3, finding that the 90% credible bound on the most informative PCA parameter is 0.03 0.08 + 0.08 in the framework and 0.0 1 0.04 + 0.05 in the framework, both of which are consistent with GR. These results highlight the sensitivity and robustness of the PCA-based approach and demonstrate its readiness for application to future observational data from the fourth observing runs of LIGO, Virgo, and KAGRA. 
    more » « less
    Free, publicly-accessible full text available November 1, 2026
  2. Detections of gravitational waves emitted from binary black hole coalescences allow us to probe the strong-field dynamics of general relativity (GR). One can compare the observed gravitational-wave signals with theoretical waveform models to constrain possible deviations from GR. Any physics that is not included in these waveform models might show up as apparent GR deviations. The waveform models used in current tests of GR describe binaries on quasicircular orbits, since most of the binaries detected by ground-based gravitational-wave detectors are expected to have negligible eccentricities. Thus, a signal from an eccentric binary in GR is likely to show up as a deviation from GR in the current implementation of these tests. We study the response of four standard tests of GR to eccentric binary black hole signals with the forecast O4 sensitivity of the LIGO-Virgo network. Specifically, we consider two parametrized tests (TIGER and FTI), the modified dispersion relation test, and the inspiral-merger-ringdown consistency test. To model eccentric signals, we use nonspinning numerical relativity simulations from the SXS catalog with three mass ratios (1, 2, 3), which we scale to a redshifted total mass of 80M⊙ and luminosity distance of 400 Mpc. For each of these mass ratios, we consider signals with eccentricities of ∼0.05 and ∼0.1 at 17 Hz. We find that signals with larger eccentricity lead to very significant false GR deviations in most tests while signals having smaller eccentricity lead to significant deviations in some tests. For the larger eccentricity cases, one would even get a deviation from GR with TIGER at ∼90% credibility at a distance of ≳1.5 Gpc. Thus, it will be necessary to exclude the possibility of an eccentric binary in order to make any claim about detecting a deviation from GR. 
    more » « less
  3. NA (Ed.)
    General relativity (GR) has proven to be a highly successful theory of gravity since its inception. The theory has thrivingly passed numerous experimental tests, predominantly in weak gravity, low relative speeds, and linear regimes, but also in the strong-field and very low-speed regimes with binary pulsars. Observable gravitational waves (GWs) originate from regions of spacetime where gravity is extremely strong, making them a unique tool for testing GR, in previously inaccessible regions of large curvature, relativistic speeds, and strong gravity. Since their first detection, GWs have been extensively used to test GR, but no deviations have been found so far. Given GR’s tremendous success in explaining current astronomical observations and laboratory experiments, accepting any deviation from it requires a very high level of statistical confidence and consistency of the deviation across GW sources. In this paper, we compile a comprehensive list of potential causes that can lead to a false identification of a GR violation in standard tests of GR on data from current and future ground-based GW detectors. These causes include detector noise, signal overlaps, gaps in the data, detector calibration, source model inaccuracy, missing physics in the source and in the underlying environment model, source misidentification, and mismodeling of the astrophysical population. We also provide a rough estimate of when each of these causes will become important for tests of GR for different detector sensitivities. We argue that each of these causes should be thoroughly investigated, quantified, and ruled out before claiming a GR violation in GW observations. 
    more » « less
    Free, publicly-accessible full text available February 13, 2026